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 QUARTERLY OF APPLIED MATHEMATICS
 VOLUME LIX, NUMBER 2
 JUNE 2001, PAGES 353-364

 REINFORCEMENT OF ELASTIC STRUCTURES

 IN THE PRESENCE OF IMPERFECT BONDING

 By

 ROBERT LIPTON

 Department of Mathematical Sciences , Worcester Polytechnic Institute, Worcester, MA

 Abstract. The two-dimensional problem of plane strain is considered in the presence
 of imperfectly bonded elastic reinforcements. A geometric criterion on the shape and
 size of the elastic reinforcement is found that determines when the effects of imperfect
 bonding overcome the benefits of the reinforcement. The criterion is given in terms of
 an eigenvalue problem posed on the surface of the reinforcement.

 1. Introduction. Recently a methodology has been developed to assess the effective-
 ness of reinforcement fibers or particles on the overall transport properties of composite

 materials. The methodology addresses reinforcement problems in the presence of non-
 standard interfacial transmission at the surface of the reinforcement, see [6, 7, 8]. This
 approach has been successful in predicting the effect of particle size and shape on the
 enhancement of structural and thermal transport properties in the contexts of thermal

 contact resistance [6], coupled heat and mass transport on the interface [9], highly con-
 ducting interfaces [7], and problems of torsional rigidity with imperfectly bonded fiber
 reinforcements [8]. In this article we use this approach to investigate reinforcement prob-
 lems in the context of two-dimensional elastic systems.

 We consider the problem of plane strain for a reinforced, compressible, linearly elastic
 material in the presence of imperfect bonding. The elastic structure to be reinforced is a
 bounded subset of the plane denoted by ÍŽ. It is assumed that the elastic reinforcement is
 distributed throughout the structure. The union of the reinforced regions is denoted by
 Ar. The part of Í2 exterior to the reinforcement is referred to as the matrix and is denoted

 by Am. Both the matrix and reinforcement are assumed to be made from elastically
 isotropic materials. The Lamé constants for the reinforcement and matrix phases are
 given by /xr, Ar and /¿m, Am, respectively and the associated isotropic compliance tensors
 are written as C"1 and C"1. Here the reinforcement is stiffer than the matrix and we

 assume C~l < C"1 in the sense of quadratic forms over 2x2 strain matrices. This
 condition is equivalent to the requirement that Kr > Km and fir > /¿m> where Kr and
 Km are the plane strain bulk moduli of the reinforcement and matrix respectively, i.e.,
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 354 ROBERT LIPTON

 Kr = fir + Àr and Km = /¿m + Am. The characteristic function for the reinforcement phase

 is written 'Ar and the piece- wise constant compliance tensor is described by C~1(xAr) =
 XArC~l -f (1 - XAr)C m1- The interface separating the reinforcement phase from the
 matrix is written as T, and ii = Am U Ar U T.
 Imperfect bonding is characterized by a loss of continuity in the displacement across
 the interface separating the reinforcement from the matrix. We consider the flexible inter-

 face model of the type used by Léne and Leguillon [5] in their treatment of the softening
 of effective moduli arising from damage. The stiffness of the interface is characterized
 by the parameter relating traction forces to the relative displacement across the
 interface. This parameter has dimensions of shear stiffness per unit length and ranges
 between zero and infinity. The limiting case "ß = oo" corresponds to perfect bonding.
 The case of no adhesion is captured in the limit "/3 = 0". This model represents the
 effect of a very thin zone between the matrix and reinforcement that is more compliant
 than the matrix and reinforcement phases. Flexible interface models similar to the type
 treated here can be found in the work of Jones and Whitter [4]. A comprehensive treat-
 ment of interface models as they relate to imperfect bonding is provided in the recent
 book of Aboudi [1].

 For a prescribed boundary traction g , such that fdn g dl = 0, the compliance energy
 dissipated inside ÎÎ is given by E(Ar,g ), where

 E(Ar,g) == min{C(Ar,r) | Tji G L (î7),î = 1,2 , j =

 divT = 0, -Tijīij = gì , on dfž} (1.1)
 and

 C(Ar,T) = ^J^C~1(xAr)T:Tdx + ß~1 ļ |rn|2d/|. (1.2)
 Here dl is the element of arc length, C~1{xAr)r-. r = C~1{xAr)ijkiTkinj represents

 the bulk compliance energy density and the vector n is the unit normal pointing into
 the matrix phase. The interface compliance energy density is /3-1|rn|2 = ß^TijrijTikn
 where repeated indices indicate summation. In order to include the broadest spectrum
 of load cases we suppose that g belongs to the space H~i(dū)2. To expedite the pre-
 sentation we denote the set of all tractions g G H~i(dū)2 such that Jdūgdl = 0 by
 L.

 The first term of the functional C{Ar , r) is associated with the bulk compliance energy,
 while the second term gives the compliance energy of the interface. The minimizer tat is
 precisely the stress tensor inside the composite and is related to the elastic displacement
 u Ar by the constitutive law: tav - C(xAr)e(uAr) where e{uAr ) is the elastic strain
 tensor. Here uat is allowed to be discontinuous across the interface and belongs to
 the function space Hx( f2'T)2. We set 6 = divi¿^r. The displacement satisfies Navier's
 displacement equations of equilibrium given by

 (Àr ~b ļlr^XLAri = ^5 ^ = I? 2, in AVi (T3)
 and

 (Am ~l~ ßm)@n =0, % - 1, 2, in Am. (T4)
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 REINFORCEMENT OF ELASTIC STRUCTURES AND IMPERFECT BONDING 355

 Across the interface one has

 [TArijrii] =0 on T. (1.5)

 Here the jump in a quantity q across the interface is denoted by [q] = q'r - <?|m, where
 the subscripts indicate traces on the reinforcement and matrix sides of the interface.
 In order to give the jump conditions for the displacement we decompose the traction

 into components normal and tangential to the interface. We let t denote the unit tan-
 gent vector obtained by counter-clockwise rotation of n by n/2 radians. The tangential

 component of the traction is given by and the normal component is TArijniīij.
 The displacement discontinuity is related to the traction force on the interface through
 "Hooke's" law:

 TA^n-iUj = -ß[uArini),

 TAr.tJ nßj = -ß[uAri í»]*

 Last we note that the compliance energy is proportional to the work done against the
 load and is given in terms of the elastic displacement as

 E{Arig) = q ¿ / uArj9jdl . (1-7) q ¿ J dû

 The reinforcement phase can have several disconnected components. The contribution
 of each component to the compliance energy is investigated. A geometric criterion related

 to the shape and size of a component is found that determines when the effects of
 imperfect bonding overcome the benefits of the reinforcement. The criterion is general
 and applies to any simply connected component E of the reinforcement phase provided
 that the boundary of E does not intersect the boundary of the design domain ÎÎ. In order
 to give the criterion we introduce the fourth-order tensor

 T = ß-'C-1-C~1)-' (1.8)

 Here each element of T has dimensions of length. This tensor provides a measure of
 the magnitude of the interfacial compliance with respect to the difference in compliance
 between the reinforcement and matrix phases. We will show that the components of
 T provide a natural length scale for the selection of reinforcement size. The relevant
 geometric parameter intrinsic to E is given by

 • í fdE dsVii dsVii dl ' t ^
 a = mm • < ^

 I Js Viii dx J

 where

 C = '<peH5/2(E) I AV = 0, f cpã = 0, f ip,idl = 0, i = 1,2i .
 I JdE JdE J

 Here ds denotes tangential differentiation on the curve 9E and A2 is the biharmonic

 operator. The notation tp,i represents differentiation, i.e., <£>,¿= dXi(p and (p,ij = d%Xjip.
 The parameter a has dimensions of inverse length. Conditions of stationarity for (1.9)
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 356 ROBERT LIPTON

 deliver the eigenvalue problem

 A2<ļ> = 0, on S, (1.10)
 nid%4>,i = -crMn(4>), on dS, (1.11)

 da(tid%<t>,i ) = -<r{dsMa(<j>) + Q(<j>)}, on 0E. (1.12)

 Here Mn{(j>) is the bending moment of the reinforcement E given by Mn{<1>) = p,ij
 and dsMa(<t>) + Q{<t>) is the Kirchhoff shear force where Ms(<j)) = Unjfaij and Q(<f>) =
 dnA<ļ> = 0. We have denoted normal differentiation by dn and the Laplace operator by
 A. From its definition we see that a is the largest constant C for which the inequality

 / ds<Prt dl>C I (Ptij (fiij dx (1.13)
 JdT, J E

 holds for all <p in the space C. For a disk of radius a one has that

 "b <114>
 this is established in Section 4.

 For a given reinforcement configuration Ar, we focus our attention on one of the com-

 ponents of the reinforcement phase denoted by E. We let Ar' E denote the reinforcement
 configuration without the component E. The compliance energy for this configuration is
 given by E(Ar'£,g). We write a - <r(E) to indicate its dependence on the geometry of
 the reinforcement E. We denote the identity tensor on 2 x 2 strains by I and introduce
 the isotropic fourth-order tensor cr(E)/. The effect of the reinforcement is given by the
 following compliance inequality.

 Theorem 1.1. Compliance energy inequality. If cr(E) satisfies

 T'1 < a(£ )/, (1.15)

 then for every load case g G L, the reinforcement does not reduce the compliance energy,
 i.e.,

 E(Ar'Z,g)<E(Ar,g). (1.16)

 The inequality holds for any reinforcement shape with Lipschitz continuous boundary.
 Here the inequality (1.15) holds in the sense of quadratic forms over the space of strains.

 We emphasize that this result is independent of the location and geometry of the other
 components of the reinforcement phase and applies to every load case g G L.
 An equivalent but more applicable form of the compliance energy inequality is given in

 terms of the contrast between the bulk and shear moduli of the matrix and reinforcement.

 We define the relative compliance 7 by

 7 = min { (2Mm)"?- (2/xr)-i ' (2«m)"?- (2«r)"i } • (L17)
 Here 7 has dimensions of length. In terms of the bulk and shear moduli the compliance
 energy inequality is given by
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 REINFORCEMENT OF ELASTIC STRUCTURES AND IMPERFECT BONDING 357

 COROLLARY 1.1. Compliance energy inequality (in terms of bulk and shear
 moduli).

 If <r(£) satisfies

 7"1 < *(E), (1.18)

 then for every load case g G L, the reinforcement does not reduce the compliance energy.

 The corollary follows immediately from the spectral representation of the compliance
 tensors given by

 C-1 = (2fxr)~1Pd + (2^)"^, C-1 = {211m)-1 Pd + (2«m)-1Ps,

 where Pd is the projection onto the space of 2 x 2 strains with zero trace and Ps is the
 projection onto the 2x2 identity matrix.
 The compliance inequality naturally implies a reinforcement size effect. Here the

 length scale is set by 7. The effect of reinforcement size is seen clearly when £ is a disk
 of radius a. We have the following size effect for a circular reinforcement.

 Theorem 1.2. Size effect for a circular reinforcement. If the reinforcement is a

 disk of radius a, and

 a < 'l , (1.19)
 then for every load case g e L, the reinforcement does not reduce the compliance energy.

 This Theorem gives a rigorous rule of thumb for the selection of the size of a reinforce-

 ment disk, namely: Only disks of radius greater than (2/3)7 can provide reinforcement
 This statement holds true independently of where the disks are placed in the structure.
 This result is in striking contrast to what is seen when there is perfect bonding between
 structural materials. For that situation, the addition of an infinitesimally small disk of
 stiffer material always reduces the compliance energy.

 Theorems 1.1 and 1.2 are directly applicable to problems of optimal compliance design
 for plane strain problems. A prototypical problem is the optimal design of a structure
 reinforced with disks of different radii. Each disk has compliance C~l and the matrix
 has compliance C~l. Here we suppose that each disk is made from stiffer material, i.e.,
 C"1 < C'1. The class of admissible designs is given by the set of all reinforcements
 consisting of a finite number of non-intersecting disks. We restrict the joint area of the
 disks to be less than a prescribed area fraction Qr of the design domain Ū. However, no
 lower bound is placed on the size of the disks nor do we place a constraint on the number
 of disks appearing in any design. We show in Theorem 5.1 that all energy minimizing
 configurations of disks can be found among those that contain disks of radii greater than

 or equal to ^7 or no disks at all. It is evident that minimizing sequences made from
 progressively finer suspensions of disks (i.e., homogenized designs) can be excluded.

 The paper is organized as follows. In Section 2 the compliance energy inequality is
 proved. The existence of a minimizer for the variational definition of a is established in
 Section 3, and a is calculated for a disk in Section 4. Section 5 discusses applications of
 the compliance inequality to problems of optimal design.
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 358 ROBERT LIPTON

 2. Derivation of the compliance inequality. In this section we derive Theorem
 1.1 using the variational formulation for the compliance energy. The stress associated
 with the configuration obtained by removing E and replacing it with matrix material is
 written f . It is the minimizer of the variational principle given by

 E(Ar'12,g) = min{C(J4r'I!, r) | t,¿ G L2{ū),i= 1,2, j = l,2,ry = Tji,

 divT = 0, -Tijīij = gi , on dfi} (2.1)
 and

 C(Ar'Z,T) = Ì ¿ I f C_1(xAr's)r: rdx + ß-1 Í |rn|2diļ. (2.2) ¿ [Jn J r'ôE J

 Here XAr'E is the characteristic function of the set Ar' E. It is evident that rAr is an
 admissible trial for the variational formulation of the compliance E(Ar' E, g) and we have

 E(Ar'Z,g) = C(f, Ar'V) < C(rAr1Ar'E). (2.3)

 Expanding C(rAriAr'T,) gives

 C(TArìAr'E) = E(Arìg)-òì (2.4)

 where

 * = 'ß_1 {J 'taM2<U - J ßiPm - Cř1)^ ■ rArdx | . (2.5)
 From compatibility conditions we have A(tr (rAr)) = 0 on E and since divr^r = 0 on

 E, there exists a stress potential such that A2ip = 0 and

 = r V.22 -VM.1 (2 6)
 L-^»21 <£,11 J

 Substitution of (2.6) into (2.5) gives

 S = i ß _1 1 dl - ßiC-1 - C~l)ijki<ß,ki <p,ij <^1 • (2.T)
 In view of the inequality (1.13) it follows that S is zero or positive if

 T"1 < <t(E)J (2.8)
 and the theorem follows.

 3. The eigenvalue problem. In this section we proceed using direct methods to
 establish existence of a function 0 in C that minimizes the Rayleigh quotient

 Ątp) = ' ^^nds^idl dx ļ (3 I JE iij ^ lij dx J

 We consider a minimizing sequence {<¿?m}^=0 such that

 lim J(<pm) = inf J(ip). (3.2)
 m-too (p£C

 ip^O
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 REINFORCEMENT OF ELASTIC STRUCTURES AND IMPERFECT BONDING 359

 Normalizing the functions (fm we may assume that

 I = * for all m = 1, 2, ... . (3.3)
 Jt,

 We make use of the following uniform bounds on the sequence.

 Theorem 3.1. Uniform bounds on the minimizing sequence. There exists a con-
 stant K independent of m for which

 < K and ''(pm''H2(di :) < K- (3.4)
 This theorem will be established in the sequel.

 We apply the uniform bounds to extract a subsequence (dn(pmi (prn) converging weakly
 in if1(9U) X H2(dT>) to the pair (h, u). Application of the Sobolev Imbedding Theorem
 shows that (dn<£m> <£>m) converges strongly in üf1/2(9E) x iJ3/2(dE). We let 0 be the
 solution of the boundary value problem

 A 2<j) = 0 on E,

 dn(j) = h on 9E, (3.5)
 0 = u on 9E.

 Putting wm = - 0 we apply the regularity theorem for Dirichlet's problem for the
 biharmonic operator (cf. [3]) to find a constant C independent of m such that

 ||Wm||tf2(E) < C(||Wm||tf3/2(dE) + ''dnWm''Hi/2(dI¡)). (3.6)
 This estimate together with the strong convergence of (dn<¿?m, <pm) shows that the

 sequence (pm converges strongly to 0 in H2( E). It now follows that

 J <t>,ij 4*iij dx = 1. (3.7)
 From the uniform bounds it is evident that 0 G H2 (d E) and dn0 G ff1(9E). Thus by
 regularity theory for the Dirichlet problem we find that 0 G if5/2 (E). It is easily seen

 that jdTt<ļ>dl = 0 and fdE 0,¿ dl = 0, i = 1, 2 and we conclude that 0 G C. To establish
 that 0 is a minimizer we first expand

 [ dsy™dsy™dl
 JdY,

 to find

 f d^a^dl = f 'd2snpm - p~ldaipm'2dl J öS J öS

 + / I eistpm +
 Jd e

 where p is the radius of curvature of the interface. It now follows from (3.8) and the
 weak convergence of (dn(pm , </?m) together with the lower semicontinuity of the L2(d E)
 norm, that

 liminf [ ds^ds^dl ' ' > [ <9s0,¿ds0,¿d¿, (3.9)
 771 00 JdT, ' ' JdT,

 and we conclude that 0 is the minimizer.
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 360 ROBERT LIPTON

 We prove the uniform bounds given by Theorem 3.1. We start by showing that there
 exists a constant C independent of m such that

 Wv^Wwidx) < C and ||dn<£m||L2(d£) < C. (3.10)
 In order to proceed we need estimates that follow from the Rayleigh quotient given by

 S»t '9su'2dl ' ' , x ^ = min Jdy S»t '9su'2dl ' ' . , 3.11
 /eEu<«=o Jdsu2dl

 The value v2 is the Wirtinger eigenvalue. For all functions u for which fdE u dl = 0 it
 follows that

 f u2dl < (^)"1 [ 'dsu'2dl. (3.12) Jd E JdY.

 Since {lfm} o° is a minimizing sequence, it follows that there is a constant D for which

 f ds<p™dstp™dl < D (3.13)
 Jd E

 for all m. Noting that fdE y>™dl = 0 we apply (3.12) to obtain

 [ 'V<pm'2dl < (u2)~l f 'ds<p™'2dl < (v2 )"1D. (3.14) Jd E JôE

 Observing that

 f |V</?m|2dZ = f 'dsipm'2 + |c?n<£m|2dZ, JdT, JdT,

 we immediately obtain the estimates ||dn<£m||L2(0E) < C' and ||ds<£m||L2(0E) < C'.
 Noting that fdī:<pmdl = 0 we apply (3.12) again to find ||<¿>m||L2(0E) < C2 , and the
 estimates given by (3.10) follow.
 To complete the proof of Theorem 3.1 we establish the estimates

 ll^ss^mIU2(öE) < C (3.15)
 and

 ''d2sn<Pm''L>(dZ) < C. (3.16)
 Here C represents a generic constant independent of m. We establish (3.16), noting that
 (3.15) follows along similar lines. We put

 Fm= [ I d2anv™ - p^dsV^dl. (3.17)
 JdT,

 From (3.8) and (3.13) we find that there exists a constant C3 for which Fm < C3 for all
 m. Expanding (3.17) gives

 f '&sn<pm'2dl = Fm - f p~2'da<pm'2dl + 2 f p-l&an<pmds<pmdl JdY, JdZ JdT,

 = Fm - 2 f - d2n<pm)dl (3.18) J as

 + f p~2'da<pm'2dl.
 ./as

This content downloaded from 167.96.145.178 on Fri, 10 Jan 2020 19:27:29 UTC
All use subject to https://about.jstor.org/terms



 REINFORCEMENT OF ELASTIC STRUCTURES AND IMPERFECT BONDING 361

 Application of the arithmetic-geometric mean inequality yields

 f 'd2n(pm'2dl < 2Fm + 2||p~2||jr/oo(0£) í I Oa<pm'2dl, (3.19) Jdz JdY,

 and (3.16) follows from the uniform bounds on Fm and ''ds(pm ||l2(ôe) •

 4. The eigenvalue problem for a disk. For a disk of radius a we show that
 g = 2/(3 a). To do this we calculate a countable set <S of stationary values of the
 Rayleigh quotient (3.1). We then use the completeness of the trigonometric polynomials
 to show that S contains all the stationary values. The minimum stationary value in S
 corresponds to 2/ (3a). Along the way we obtain all the eigenfunctions for the eigenvalue
 problem (1.10)-(1.12).

 For the disk we adopt polar coordinates (r, 0) and the eigenvalue problem (1.10)- (1.12)
 becomes

 adgdrcj) - 28q(I> - adr<'> = -ya2d2(¡> on r = a, (4.1)
 dßfj) + 2 adgdr<1> - dg<j> = -y{2ad|dr<£ - 3dß0 - adr(j>

 + a2d2(f) + a3 d^(ļ>} on r = a, (4.2)

 where <j> is biharmonic in the disk. Here y is the "dimensionless eigenvalue" given by
 y = aa. We put

 uk = ( Akrk + Bkrk+2) exp ikO, (4.3)
 and look for biharmonic solutions of the form Re(afc),Im(ufc), for k = 0, 1,2,

 stitution of uk into (4.1, 4.2) gives a linear system in the unknowns AkiBk

 cn(y , k)Ak + c12(y, k)Bk = 0, (4.4)
 C2i(y, k)Ak + 022(2/5 k)Bk = 0, (4.5)

 where

 cn(y, k) = k(k - 1 ){(k - 1) - y}, (4.6)

 ci2(y, k ) = a2(k + l){(fc2 - k + 2) - y(k + 2)}, (4.7)
 C2i(y,k) = k2(k - l){(fc - 1) - 2/}, (4.8)
 022(2/) k) = a2k(k + 1 ){k(k - 3) - y(k - 4)}. (4.9)

 The determinant of the coefficient matrix is given by

 -6a2k2(k - 1 )(k + 1){(A; - 1) - y) j - y j . (4.10)
 We generate a countable set S of eigenvalues by choosing y so that the system (4.4, 4.5)
 has a nontrivial solution for k = 0, 1, 2, - The cases k = 0, k = 1 are special in that
 both left and right-hand sides of (1.11) and (1.12) are identically zero for linear functions.
 This is reflected in the system (4.4, 4.5). Indeed, for k = 0 the system reduces to the
 single equation #0012(2/) 0) = 0- The condition 012(2/, 0) = 0 delivers y = 1. For k = 1 the
 system reduces to #1012(2/, 1) = 0, #1022(2/) 1) = 0- One finds that 012(2/, 1) = 022(2/) 1)
 and the condition 012(2/,!) = 0 delivers y = 2/3. For k > 1 the determinant given by
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 362 ROBERT LIPTON

 (4.10) vanishes for y = k - 1 and y = and nontrivial solutions follow for these choices.
 Collecting these results we have a sequence of eigenvalues given by

 5- {¿,,- = 2.3,4, ...}. (4.11)
 To complete the calculation we show that S contains all the eigenvalues associated with
 eigenfunctions belonging to the space C. In order to proceed we list all the eigenfunctions
 associated with S. For a = 2/(3 a) the eigenspace is spanned by

 r3cos0, r3sin0.

 For cr = l /a the eigenspace is spanned by

 r4 cos 20, r4 sin 20, r2cos 0, r2sin0, r2.

 For g - l ļ (u), Z = 2, 3, ... , the eigenspace is spanned by

 (^-,>-wr<3,+,,)co8(3'-i)''

 r(i+1) cos (I + 1)0, r(i+1) sin(Z + 1)0.

 For a = //(3a), I > 2 such that I/ 3 is not an integer, the eigenspace is spanned by

 (r(i_1) ~ ^õ7r(í+1)) cos(z ~ 1)0'

 (ril~1} - ^Ķr('+1)) ňn(l-l)9,
 Last we suppose the existence of an eigenvalue > 0 that is not in S. It is shown

 that the eigenspace for this eigenvalue is given by the span of the linear functions. Since
 linear functions are excluded from the admissible class C it follows that S is the set of

 all stationary values of the Rayleigh quotient.
 Before proceeding we state the following theorem.

 Theorem 4.1. Orthogonality of eigenspaces. Consider the eigenvalue problem
 (1.10)-(1.12). Given two distinct eigenvalues oa and 07, and associated eigenfunctions fa
 and fb then

 / f%f%dx = 0. (4.12)
 The theorem follows immediately from the identity

 / dj'djļdl = oa [ f%f%dx J 9S J S

 = crb [ f%f%dx ■ J s
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 We suppose does not lie in S to show that the associated eigenfunction fb is a
 linear function. Consider any function g given by a linear combination of eigenfunctions
 associated with the set of eigenvalues S. From Theorem 4.1 and integration by parts it
 follows that

 o = J f f%9,ijdx J S . (4.13)
 = - / (( dsMs(fb ) + Q(fb))g - Mn{fb)dng)dl.

 JdT,

 The goal now is to show that dsMs(fb) + Q(fb) = Mn(fb) = 0. From this we easily
 see that /s 'fbj'2dx = 0 and conclude that fb is a linear function, see [2]. The following
 system of functions can easily be constructed from linear combinations of eigenfunctions

 associated with S. The system is given by

 r2; rk cos fc0, rk sin &0, k = 2,3,...; rk+2 cos kO, rk+ 2 sin &0, fc = 1,2,3,....

 For k = 2, 3, . . . , we form the linear combinations

 9k = CkVk exp ikO + Dkrk+2 exp ikO.

 For any vector (^1,^2) in R2 we may choose Ck and Dk such that on r = a

 C dr9k,9k ) = ( vuv2)expik6 . (4.14)

 That such a choice can be made is evident from the associated linear system

 kak~xCk + ak+'k + 2 )Dk = vi, (4.15)
 akCk + ak+2Dk=vi , (4.16)

 since the determinant of the coefficient matrix of the system (4.15), (4.16) is -2 a2k~x ^ 0.

 Substitution of gk into equation (4.13) together with (4.14) shows that dsMs(fb) + Q(fb)
 and Mn(fb) are orthogonal to the system (cos /c0, sin k9), k > 1, with respect to the
 L2(d E) inner product. This implies that dsMs(fb) + Q(fb) = (CÍ cos# + £2 sinö) + c'
 and Mn(fb) = (Ç2 cos 0+Ci sin0)+C2, for constant vectors (CÍ? C2) and (Ci > C2) R2 an<i
 constants c' and C2. Next we set g = Dor 2 and g = D'r exp iO and apply the identity
 (4.13) to find that

 Mn(fb) = ^(CÍ COS0 + C2 sinô) + ac'.

 Last we show CÍ = C2 = ^ and c' = 0. For linear functions g = r(rji cos 9 + 772 sin0) + b
 we have that g¿j = 0. For this choice of <7, (4.13) holds and we obtain the identity

 0 = 2|E|y (mCÍ + V2C2) + m bei, (4.17)
 for every choice of 771,772, and constant b. This shows that CÍ = C2 = ^ and ci = 0.
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 5. Optimal compliance design of imperfectly bonded reinforced materials.
 We consider the problem of minimizing the compliance energy over the class of designs
 composed of suspensions of stiff elastically isotropic disks immersed in a more compliant
 elastically isotropic matrix. Here the suspensions consist of a finite number of noninter-
 secting disks of different radii. We suppose that the suspension takes up no more than
 a prescribed area fraction 0r of the total composite domain E. However, we assume no
 lower bound on the disk radii and place no constraint on the number of disks. Denoting
 the zth disk by Bi we write Ar = (J We denote this class of suspensions by Qor. We
 consider the subclass SQor of Qor, defined to be all suspensions with disk radii greater
 than or equal to I7. For a prescribed traction g G L on the boundary <9E, we consider
 the problem:

 min{£;(Ar,5): Ar € Qor}. (5.1)

 We have the following optimal design theorem.

 Theorem 5.1. Optimal compliance design theorem. The optimal distribution of
 disks can be either found in the class SQ$r or the optimal design consists of no disks
 whatsoever. Moreover, if ÎÎ has dimensions for which SQ$r is empty, then the best design
 is obtained by not reinforcing at all.

 Proof. We consider any suspension in the class Qer. If there exist disks of radius less
 than §7, then Theorem 1.2 shows that there is no advantage to keeping them in the
 suspension. Moreover, the configuration obtained by removing these disks is now either
 in the class SQer or we have removed all the disks. If Ū is "too small" and we can
 only fit disks of radii less than |7 inside, then Theorem 1.2 shows it is better not to
 reinforce. □
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